
How can I use the Status System to make sure that an operation is complete?

 

Measuring a low frequency with a reciprocal counter, performing a swept-sine measurement with a dynamic signal
analyzer or spectrum analyzer, and scanning through a list of channels with a data acquisition system (to mention a
few of the most outstanding examples), all share a common source of trouble. These operations take time. Any
operation that follows (such as reading the data resulting from the operations) must be delayed to insure that it doesn’t
interrupt the ongoing measurement, or cause a timeout. A seemingly reasonable solution would be to introduce delays
or wait periods after the offending operation. But this poses a problem: How do you determine the time needed for the
operation to complete without adding unnecessary delays to your program? A better solution is found in proper use of
the Status System.

Most instruments have a set of registers that report the status of the instrument including various errors. These can be
used to assert an SRQ (service request) and thus indicate to the controller that an event of interest has occurred or that
certain condition exists.

For the purpose of studying the status system, we will use the 53131A counter. However, the concepts are applicable
to most instruments. The following is a diagram of the 53131A Status System.

file:///C|/status/status.htm (1 of 4) [5/14/2002 10:38:00 AM]



 

Our main interest will be the output queue, the standard event register and the status byte. Before we can program the
status register we must first clear it with the command *CLS.

The output queue can have one of two conditions, it can have data in it as a result of a previous operation or not. If
there is data in the output queue, this is indicated by setting bit four of the status byte (MAV -- message available).

 

Each register is paired up with an enable register (not shown in these illustrations). For example, the standard event
register has a corresponding standard event enable register. Since our interest is in bit zero of the standard event
register, we must enable it by placing a one in the corresponding bit of the standard event enable register. This is done
by writing a decimal value equivalent to the binary weight of the bit (in this case 1, because 2^0=1). The command
would be *ESE 1. When and if bit zero of the standard event register is set, this bit is "ANDed" with bit zero of the
standard event enable register. If both event and enable bits are set, a one is sent to bit five of the status byte. This
holds true for any bit of the standard event register, since the bits resulting from "bitwise ANDing" the event register
with the enable register are then "ORed".

 

In order to achieve our goal of asserting an SRQ, the Status Byte has to be enabled. We can do this by writing the
decimal sum of the binary weight of the bits we want to enable. In this case we wish to enable bits four and five. Bit 4
has a binary weight of 16 (2^4=16) and bit five has a binary weight of 32 (2^5=32). The sum is 48. So we will send

file:///C|/status/status.htm (2 of 4) [5/14/2002 10:38:00 AM]



the command *SRE 48.

When and if bits four and five get set, they will be "ANDed" with the corresponding bits of the status enable register.
If any bit of the status register is set and its counterpart in the status enable register is also set, bit six of the status
register will be set, causing the GPIB bus to assert an SRQ.

We have not yet discussed how to get the "operation complete" bit (bit 0 of the standard event register) to "set". This
cannot happen without some way of identifying the operation of interest. We can do this by sending the command
*OPC after the operation of interest has been initiated. The following VEE program illustrates the entire process.

file:///C|/status/status.htm (3 of 4) [5/14/2002 10:38:00 AM]



 

There is only one thing left to do in order to make this work. The program must have a function that either causes
other operations to be delayed until the SRQ is asserted or interrupts other operations when the SRQ is asserted. The
above program illustrates the use of an interface event object to cause the program to wait until the SRQ has been
asserted.

 

file:///C|/status/status.htm (4 of 4) [5/14/2002 10:38:00 AM]


	Local Disk
	file:///C|/status/status.htm


